This paper summarizes 1 ontributions of [I
the classification and retrieval of large volume of

as information systems, were proposed. The retrieval mechanism :
messages, as well as to obtain information about messages and classification s
the definition of ad hoc queries using a specific-purpose language. This language makes use ¢
information indexing and retrieval techniques. The classification mechanism is based on
concept of virtual folder, which allows messages to logically related io one or more folders,
providing addirional facilities and more flexibility to message classification procedures. A particular
interesting type of virtual folder is the automatic folder, defined by a query that retrieves a set of
messages meeting a specified criterion. Automatic folders are thus similar to the concept of view in
database systems. Virtual folders help on the automatic and reorganization of messages, taking in
charge the maintenance of the consistency between the folder’s intent and the set of messages it
represents. The paper discusses and illustrates the use of the language and of the classification

Jacilities, and discusses implementation issues.

el
IZ i

on
crl

[YUCIUYES, (hi

Key-Words: query language, full text indexing and retrieval, object-oriented modeling, electronic
mail

1. Introduction

Electronic mail (email) has become an essential form of communication. One of its key
features is the tacility and rapidity with which information can reach a wide audience, with a very
low cost, compared to other forms of communication technology (e.g. telephone, fax)[SPRO1].
The growing size of messaging communities, specially when group communication tools like
distribution lists or asynchronous conferencing systems are used, increases the capacity of
disseminating information in an easy and timely manner [REI93. ROB91].

However. these same advantages are at the origin of the most serious problems of email:
information overload. Regular users can receive between 30 up to 100 messages everyday
[ROB91], and the problem is even worse for those who subscribe distribution or interest lists. The
volume and pace of information can be overwhelming, given the amount of “junk mail”, the
multiple topic threads and the non-sequential patterns of related messages [PAL95]. Managing all
this information is a laborious and time-consuming everyday activity, and electronic mail tools
must provide advanced managing facilities for efficiently identifying, prioritizing, classilying,
storing and retrieving messages [HIL85, PAL95].

A study on the use of electronic mail [MAC88] revealed that, although the use of email 15
strikingly diverse from user to user, two mail email handling strategies can be identified:
prioritizers and archivers. Prioritizers are users interested in using email to maximize efficiency
and save time. Prioritizers deal with the problem of information overload by reducing the size of

1029

their mailbox, the number of folders and the number of the subscription lists. This kind of user
tends to use message filtering and automatic processing facilities [TAY92, POL88, BER9%4] to
reduce the amount of effort and time spent in the management of his/her mailbox. Archivers, on the
other hand, use email as an information source, and are willing to spend extra time to avoid the
possibility of missing something important. They resist to inhibit the flow of incoming messages
by filtering, due to the risk of loosing information potentially useful. Moreover, they tend to save
most received messages with the assumption that they may be useful (some day), have a large
number of folders, and consequently have difficulty find filed messages. The archivers email
handling strategy suggests that email is much more than an efficient communication technology: it
18 a rich source of quality and up-to-date informarion [MACES, PALIS]. In both cases. the la
amount of mails make it difficult to identify those that are important, to classify them according (o
appropriate criteria, and to discard useless messages [BAE93].

In this paper, we discuss the striking features of the mechanisms proposed in [BEC96,
FER97, FER97b] to aid in the classification and retrieval of large volumes of electronic messages,
considering mainly the needs of the archivers mail message handling strategy. The classification
mechanism [BEC96] is based on the concept of virtual folder, which allows messages to be
logically related to one or more folders, without requiring message duplication. The retrieval
mechanism was designed as a specific-purpose retrieval language [FER97b] that enables users to
locate and retrieve messages, information about messages and/or the classification structures. The
language makes use of text information indexing and retrieval techniques in order to efficiently treat
semi-structured messages, i.e. messages divided into a zeader, describing the sender, receiver(s),
subject, etc., and the content of the message, written in natural language. Using this retrieval
language, users can define Automatic Folders, a particular type of virtual folder, very similar to the
concept of view in database systems [DAT86], in which a folder is specified by a query that
retrieves a set of messages that meet a given criterion. These mechanisms are complementary to the
functions present in mail systems (e.g. send, forward, receive, etc.), and mail tools (e.g. edit,
print, etc.).

Among the benefits provided by the proposed mechanisms, two of them are of special
relevance. First, automatic folders help on automatic classification and reorganization of messages,
taking in charge the systematic maintenance of the consistency between a folder's intent and the set
of messages the folder represents. Second, the retrieval language puts forward the foundations
enabling mail systems to be treated as real information systems, where information can be easily be
located and retrieved. In contrast to existing mail systems, either commercial [LAQ92] or
experimental [BOR 91, NIC92, GOL92, MALS87, MALS9, LAI88, POL8S, MAEY%4, EGLI3,
BER94, TAY92, POL88, WYL92], the retrieval facilities are not limited to the location and
retrieval of messages, but enables to easily retrieve information about messages and/or
classification structures.

The rest of the paper is organized as follows. In Section 2, current approached for dealing
with the problem of information overload in electronic mail environments are discussed. The
proposal is presented in Section 3, which describes the underlying philosophy, the related
concepts, and the representation of these concepts using and object-oriented model. Section 5
describes the language designed to refrieve information in email systems, exemplifying its use.
Section 6 presents the classification mechanism based on the concept of virtual folder. Section 6
discusses implementation aspects, and conclusions are drawn in Section 7, where future work
perspectives are also presented.

O
v

1030

~

} A e e Paze T 12
2. Approaches for Dealin

with In

8

2.1. Folders

In order to help managing the large volume of electronic messages. use
them using folders. The grouping of messages related to a common issue i
of locating them later, since it reduces the search space. Messages are as
some user defined criterion, implicitly embedded in the name chosen for the fol
a folder, the message remains there until its removal is explicitly determined.

Folders are classification structures implemented in most mail tools as files [I
WYL92, EGL93, BER%4], in which messages are stored according 1o some specified {ormat.
Using folders. information contained in messages can located by a) inspection of the messaoe
contents using mail readers, b) text location functions available in message browsers, or ¢) use of
operational system commands, such as UNIX commands grep or pick. These facilities are often
primitive (e.g. limited to the header of the message. poor facilities - if any - to define complex
search expressions using logical operators, etc), or may present a poor performance when a large
number of folders, and/or messages is considered.

A consequence of implementing folders as files is that folders must be located prior to the
location of the messages. However, the consistent and continuous management of email
classification is a hard task, as exemplified by the problems discussed below:

e it may be difficult to determine the appropriate folder to move a message. This situation may
arise when a message can be conveniently classified in more than one folder, or when the user,
as time progresses, forgets the meaning of (some of) the folders he/she has created;

° it may be difficult to select the folder(s) to locate and retrieve messages, often implying the
search in various folders. This situation may occur, for instance, when there is no folder for the
subject at hand, when the user does not remember anymore the meaning of some folders, when
messages were not correctly classified, etc ;

e necessity of periodical reorganization of folder contents and classification structures, according
to new interests of the user, or increasing number of archived messages. This restructuring task
is laborious and error-prone;

e it is difficult to maintain the consistency of the folder classification criterion and the set of
messages it contains. Indeed, as time progresses, messages may not meet anymore the
classification criterion defined for the folder (e.g. important messages). Other reasons may be
the inadequate choice of a folder to move a message to, given that the folder name is the only an
indication of the classification criterion the folder represents, or even the accidental assignment
of messages to the wrong folders.

All the above mentioned problems are only symptoms of the real problem, which 1s the lack
of explicit classification criteria for folders. Consequently, message classification in folders 1s a
laborious and ineffective task. The use of folders as storing units may worse this problem, given
that it prevents the retrieval and reorganization of messages independently of the way they were
stored.

Another problem is that available message location facilities enable to locate messages, but
not to locate information in general. One cannot, for example. easily query “When is the last time
John sent me a message?”, “Who sent me messages today?”". “How many messages I exchanged
with John yesterday?”, *“To which folder did I move that message?”’, etc, without inspecting the
headers of all emails contained in one or more folders, or even the contents of these mails. Manual
inspection can be a error-prone activity, in particular if the user cannot locate the appropriate folders
to mspect.

1031

2.2. Filtering and Automatic processing

Message filtering is characterized by the selection of a set of messages that meet some
criterion [MAL87]. Filters are established in terms of information contained in messages, either in
the header (e.g. to:, from:, etc.) or contents parts. The use of filters aims at reducing the user effort
in the identification of messages for later processing (e.g. classification, deletion, etc.) [PAL95].
Filtering can be triggered automatically for incoming messages.

In most mail tools [ROB91, BOR91, LAI88, POL88, MALS89, GOL92, WYL92, TAY92,
TER92, BER94, MALS87], automatic processing is implemented using rules. A rule is composed
of a selection part, which describes a filter, and an action part, which defines a set of procedures to
be applied to the set of filtered messages. Rules are triggered by system events, such as incoming
mail, enabling the automatic processing of messages (e.g. automatic deletion or classification).
Different proposals of rule based systems can be found in the literature [BOR91, NIC92, GOL92,
MALS7, MALS89, LAI8S, POL88, MAFEI4]. Tools such.as ISCREEN [POLS8], Tapestry
[NIC92] and Procmail [BER94], ELM [TAY92], Mail Filter [WIL92], are based on semi-
structured messages, whereas others use the concept of structured messages, discussed in Section
2.3.

The facilities for defining filters are normally the same message location functions available
in mail tools. An alternative approach for filtering semi-structured messages can be found in
TAPESTRY [TER92], which is based on a query language named TQL. The idea in TAPESTRY
is to reduce information overload by having a central repository of messages. Individual users can
then define TQL filters to search for interesting messages in the repository, and bring them to
his/her own mailbox. An example of TQL query is m.sender=john’ and m.words = {'SBBD’},
which filters all messages coming from john and which have the word “SBBD” in its contents. It 1s
not reported in [GOL92] the use of TQL for searching messages in the user own mailbox.

The use of rules for message classification makes explicit the criteria to classify messages,
aiding in the identification of messages and minimizing some of the problems mentioned in Section
2.1. However, it does not solve the problem of maintaining the consistency between the folder
intended classification criterion and the messages it contains, since messages can be assigned to
folders by other procedures (e.g. manually, or by other conflicting rules). It also does not address
the problem of{\em inconsistencies due to the action of time}, nor help much in the reorganization
of folder contents and classification structures, given that often filtering can only be applied to
incoming mail.

Filters defined over the contents part of semi-structured messages have their expression
power limited by the facilities available for dealing with text. Since the semantics of message
contents, written in natural language, can not be easily identified [MALZ9, HAMO90], the
construction of precise and useful filters can be a complex, if not impossible task. Existing filtering
software such as [WYL92, TAY92, BER94] are not easy to setup and require the user to prepare
special control files in a language that cannot be easily understood by non-computer specialists
[PAL9S]. The poor expressiveness of filters or the complexity of their definition can result in a
selection of messages that is either incomplete or imprecise, which in the context of automatic
processing can lead to undesired effects, such as deleting important messages or classifying a
message in an unexpected way. Such kind of side-effect can be disastrous, specially considering
the archivers profile.

Therefore, filtering and automatic processing can be invaluable for managing large volumes
of messages, but they do not constitute a complete and fully reliable solution for identifying and
classifying electronic messages, in particular considering the archivers profile.

1032

wlesd

2.3. Structured Messages

Structured messages are proposed as a means to increase the precisi
A structured message has its content part divided into. a number or pre-d
message template. Messages are normally associated to classes m t‘*z*i;a,,
generalization hierarchy. Information Lens [MAL87, MAIL89, ROB91] %b}f"'
Andrew Message System [BORS1] and PAGES [HAMO90] are ex ampg s of s
structured messages.

The use of structured messages makes easier the process of
prioritization and classification, since its contents are composed of pre-defined
used to construct more precise and reliable filters to base automatic process
BORO91].

The use of structured messages is appropriate for those applications where it does exi
certain degree of structuring and standardization of the information exchanged by messages, such
as office automation. work flow, etc. [KOS91], typical of organizations using email to fulfill tme
and task management work functions [MACS88]. However, its adoption becomes awkward in
environments where there is the need of manipulation and exchange of information to which
standardization cannot be easily introduced, or the need of communication among heterogeneous
systems, which do not recognize each other's type system, if they recognize any type system at all.
Therefore, despite the great advantages provided by the use of structured messages, its applicability

is limited.

ST
W
s
sl

3. Proposal
3.1. Overview

The retrieval and classification mechanisms proposed in this work are targeted mainly to
fulfill the needs of those individuals who use electronic mail as information source. i.e. the
archivers. Archivers. according to [MACS88], are individuals that :

a) increase mail volume by subscribing to voluntary distribution lists;
b) save a large percentage of their mail messages;

¢) maintain a large number of mail folders;

d) tend to read all of their mail, or try to;

e) have difficulty finding mail that has been filed.

The rationale for this proposal is that the solution for information overload considering this
profile, can not be achieved by reducing the volume of received messages. Indeed, archivers tend
to not trust filtering and automatic processing [MACS88], and they are always afraid of being unable
to locate an automatically classified message or accidentally delete an important information.
Archivers thus need a flexible solution to classify and locate messages and information contained in
messages.

The classification mechanism in our approach is based on the concept of virtual folder,
which allows messages to be logically related to one or more folders without requiring duplication.
Automatic folders are a particular useful type of virtual folders, specified by a query that retrieves
messages that meet a certain criterion. By explicitly associating to a folder its classification criteria,
this mechanism helps on the automatic classification and reorganization of messages, maintaining
the consistency between the folder intent and the set of messages the folder represents.

The retrieval mechanism offers advanced facilities for text information search, and enables
to treat electronic mail as an information system. It was designed as specific-purpose retrieval
language enabling the location and retrieval of information considering large volumes of electronic
messages. It offers facilities to locate information independently of message or folder inspection,
through the definition of ad hoc queries to locate and retrieve not only messages. but also

103:

information contained in messages, folder classification structure, or any combination of these.
Indeed, it allows not only to locate and retrieve messages, but also information contained in
messages and/or its classification structures.

The concept of virtual folder and its modeling using an object-oriented model, which
underlie the retrieval and classification mechanisms, are discussed in the remaining of this section.
The query language is then presented in Section 4, whereas the classification process using virtual
folders is the object of Section 5.

3.2. Virtual Folders

From a user perspective, a folder is a message classification unit, as described in Section
2.1. In this work, however, folders are not implemented as a physical unit for storing messages.
Instead, messages are related to folders by logical relationships. This allows a greater flexibility for
message classification, enabling a message to be associated to multiple folders without having to be
duplicated, and making it easier the process of message reorganization. There are three types of
folders, referred to as manual, automatic and system folders, described below:

a) Manual Folder

In terms of functionality, manual folders act as regular folders, as described in Section 2.1, where
users are in charge of message classification, and definition and maintenance of classification
criteria. Messages are assigned_to, removed_from manual folders through the explicit application
of classification operations, described in Section 5.1.

b) Automatic Folder

Using automatic folders, the classification of messages is achieved by the execution of a query
expression, which explicitly states and maintains the classification criteria. In other words, an
automatic folder represents the set of messages that meet a certain criterion at any given moment.
An analogy can be established between the concept of automatic folder and the concept of view in
databases, which is a virtual relation defined by a query over existing, concrete relations [DAT86].
Therefore, an automatic folder is specified by a name and a message retrieval expression. This
expression is executed every time a user wishes to retrieve the set of messages represented by the
folder criterion. This approach guarantees the consistency between the classification criterion
specified for a folder, and the set of messages associated to it. To guarantee this integrity, it is not
possible to explicitly assign or remove messages to/from automatic folders.

c) System folders

In systems folders, the classification criteria are determined and maintained by the system. A
minimum set of such folders was defined in this work, based on those normally provided by mail
tools [LAQ92]:

e NEW: messages received which have not been read by the user;

e OLD : messages read by the user;

e REPLY : messages received in response to messages sent by the user;

e ANSWERED : messages received to which the user has already replied.

Messages cannot be explicitly assigned/removed to/from system folders by users. Instead, the

application of operations like read, reply, etc. to messages results in their classification in the
appropriate system folder, under the control of the system.

Each message is classified into one of the system folders (NEW or OLD), and possibly
according to other folders, either automatic, manual or system.
1034

3.3. Data Modeling

An object-oriented model was chosen in order to properly
characteristics of these concepts, such as :
e multivalued atiributes, needed to characterized both message propertics (.o 1 cc:) and folder
properties (i.e. the set of messages associated to folders); .

e optional properties of messages (e.g. not all messages have a cc: field in its descring

® complex objects, needed to represent the relationship between messaces and (olders:
® behavior that can be associated to messages (e.g. discard, reply), and folders (c.o

I .g. creaie
classify).
Object-oriented models conveniently handle all these requirements, and have tional

facilities that can be extensively used, such as data abstraction, inheritance. overr .
binding, etc. [ATK89]. Figure 1 depicts the main classes used to represent messages and folders
using the O2 data model [DEU91], and highlights the properties relevant to the rest of our
discussions.

Class MSG Class MAN_FLD inherit FLD
type tuple (Msg_id: string, type tuple (msgs: set(MSG))
From: Address, method classify (msgs: set (MSG)).
To: set (Address), unclassify (msgs: set(MSG)),
Cc: set (Address), with extension
Date: Date, end
Subject: string,
Size: Integer, Class AUT_FLD inherit FLD
Content: Text) type tuple (expression: Query)
method create, method set_expression (exp: Query)
discard, with extension
receive, end
send,

method body msgs_in: set (MSG) in class MAN _FLD

with extension { return self.msgs}
Class FLD method body msgs_in: set (MSG) in class AUT _FLD
type tuple (Name: string, {return self.expression.execute}
Creation: Date,
Author: string, method body set_expression (exp: Query) in class AUT FLD
) {self.expression = exp;}

method msgs_in: set(MSG),
count_msg : integer,
rename,
create,
remove,
removed&discard,
-

with extension

Figure 1 - Data Modeling

Class FLD
(Virtual Folders)

Class MAN_FLD Class AUT_FLD Class SYS_FLD
(Manual Folders) (Automatic Folders) (System Folders)

I
| l |

‘ Answered—l | New l | Old j | Reply I

Figure 2 - Hierarchy of Classes Representing Folders

Asitcan be seen in Figure 1, messages are modeled by the class M SG, characterized by
the usual fields of semi-structured messages (e.g. To:, Cc:), and the common operations that can
be applied to them (e.g. send, discard). The class FLD captures the properties common to all
folders. The operation msgs_in returns the set of messages currently associated to the folder object.
This operation is overridden in the subclasses of FLD (Figure 2) in order to define the proper
implementation, according to the specificities of each folder type. For manual folders (class
MAN_FLD), this operation returns the value of the attribute msgs, which contains the message
objects presently associated to the folder. For automatic folders (class AUT _FLD), the operation
triggers the execution of the query that defines the folder's classification criterion, also stored as an
atibute (expression). The implementation of the subclasses representing system folders are not
shown here due to space limitations. Notice that this modeling allows to treat folders uniformly,
relying on dynamic binding to select the proper implementation according to folder type.

4. Query Language

A specific-purpose retrieval language was designed with the aim of locating and retrieving
information considering large volumes of electronic messages. It offers facilities that enable users
to locate information independently of message or folder inspection, through the definition of ad
hoc queries to locate and retrieve not only messages, but also information contained in messages,
folder classification structure, or any combination of these. This language is intended to fulfill
mainly the needs of archivers, who often have difficulty finding filed information, due to large
number of filed emails and folders used to classify them. Queries can be used to exploit electronic
mail as an useful information system, or to define automatic folders. They could also be used in the
definition of rules for automatic processing of retrieved messages or folders (e.g. discard,
forward).

Considering the contents of semi-structured messages, advanced text retrieval facilities
were also required to implement this language. Text information retrieval techniques can be very
powerful, allowing inexact string matching, use of synonyms, positional search, etc [KOS92]. We
have considered an initial set of useful text search facilities for our language, namely prefixed
match, synonyms and occurrence frequency.

The language was designed inspired on O2SQL features [BAN89], but it is restricted to
specific constructors for dealing with messages, folders, and text retrieval. A language as O2SQL
would be too general for our purposes, since a limited number of classes need to be considered,
and O2SQL generality would unnecessarily complicate the language. The main features of this
language and its implementation are discussed in the remaining of this paper. As a final remark, we
do not intend this language to a final user, though it could be easily used by those with a minimum
experience on query definition (a similar assumption is done in TAPESTRY, with regard to the use
of TQL [TER92]). At the present stage of this work, the issue of providing a proper graphical

1036

interface enabling users to formulate ad-hoc queries by themselves, perhaps in a "Mail by
Example" style, has not been addressed yet. ‘ “

4.1 Language Syntax

A simplified syntax of this language 1s presented in Figure 3. In the figure, words in bold

are reserved words of the language. The reader can refer to [FER97] for a detailed discussion of
this language, as well as its complete syntax. Due to space limitations, we will present the striking
features of this language using examples, after a brief description of each of its clauses. The
language is composed of four main clauses, as follows:

Single_Query ::

SELECT <result>

FROM FOLDER f IN <flds> [WITH <fld_cond>]
[FROM MESSAGE m IN <msgs> [WITH <msg_cond>]
[WHERE <comp_cond> |]

|

SELECT <result>

FROM MESSAGE m IN <msgs> [WITH <msg_cond>]

<result> = <folderlist> | <msglist> | <msg_att> | <fld_att> |

TUPLE((msg_att | f1d_att)+)

<folderlist> == (fld)+ /*where fld is an instance of FLD*/
<msglist> = (msg)+ /* where msg is an instance of MSG */
<flds> »= FLD |MAN_FLD | AUT_FLD |

NEW | OLD | ANSWERED | REPLY | <named-folder-query>

<msgs> = MSG | f.msgs_in | <named-message-query>

Figure 3 - Simplified Query Language Syntax

Select clause: specifies whether the result of a query is a set of messages (msglisr), set of
tolders (folderlist), or one or more message and/or folder attribute values (msg_arr and/or
fld_arr). msglist and folderlist are, respectively, a set of message/folder object identifications
(internal surrogates).

From Folder clause: allows users to specify which folders will be considered during query
processing (fIds). The default is the set of all existing folders (i.e. instances of Class FLD).
Restrictions can be made through the specification of a FLD subclass, or using folder objects
selected by a previous query (named-folder-query). Optionally, additional restrictions can be
applied to the resulting folder subset by the specification of conditions on folder attributes
(WITH subclause), using relational, logical and text retrieval operators. The From Folder
clause is not required if the user wants to retrieve messages or message information
independently of any folder information.

From Message clause: allows users to specify the set of messages that will be considered
during query processing (msgs). The default is the set of all existing messages (1.e. instances
of class MSG). This set can be delimited in two ways. First, by using only the messages

1037

associated to the folders filtered by the From Folder clause of the query, as specified by the
expression f.msgs_in. The other possibility is to use the set of message objects selected by a
previous query (named-message-query). As with folders, the resulting set of messages can be
further restricted by using conditions over message attributes (WITH subclause). In addition to

the text, relational and logical operators, set operators (e.g. €,,) can be used for the
multivalued attributes of messages (e.g. To:). The From Message clause 1s not required if the
user wants to retrieve folders or folder information, independently of associated messages
information.

e Where clause : this clause is necessary only when the user wants to define selection
conditions that compare message attributes to folder attributes. Conditions are specified using
relational, logical, set and text retrieval operators. To use the Where clause, both From Folder
and From Message clauses must have been specified.

All possible combinations of these 4 query clauses are shown in the BNF of Figure 3.
Though not indicated in the syntax, query expressions can be composed using UNION,
INTERSECTION and MINUS set operators over compatible atomic queries (Single_Query).
Query results can also be named such that they can be used in other queries, allowing in this way a
query strategy based on incremental refinements. The possible combinations of the clauses and the
striking features of the language will be illustrated through the following examples:

Example 1 : Selecting messages independently of folder information and use of

synonymas
a) Which messages received after 10/03/97 are about databases?

SELECT m
FROM MESSAGE m in MSG WITH m.content HAS 'DB' and m.date > 10/03/97

If the user defines synonyms for the expression “database”, say, “DB”, “DBMS”, “Object Oriented
Databases”, etc., the condition expressed using the operation HAS selects all messages where one
of these defined synonyms appears at least once in their content part. In this example, the set of all
existing message objects is considered, since the From Message clause specifies the use of the
class MSG. Notice that message objects are being retrieved in this query, but any message attribute
could have been specified as well (e.g. m.date, if the user would like to know only the sending
date of these messages).

Example 2 : Selecting folders independently of message information and prefix
searching

b) Which automatic folders have words starting with paper in its definition expression?

SELECT ¢t
FROM FOLDER fin AUT_FLD WITH f.exp HAS 'paper*'

The query structure is similar to the previous example. The only difference is that it retrieves
folders, instead of messages. Only automatic folder objects are considered, since the From Folder
Clause specifies the use of class AUT_FLD. Recall that automatic folders are defined by a query
that selects a set of messages meeting a given criterion. In class AUT_FLD, the attiibute exp stores
the query defined for the automatic folder. Queries such as the one shown in this example could be
useful, for instance, during classification structure reorganization or inspection [BEC96]. This
1038

W’VW‘WMMM«M’UWMMWNMH.(mmf’h NS ORI

example also illustrates the use of prefix matching, allowing the search of anj
with paper by using HAS operator the symbol * after paper substrin

5] i

Example 3 : Using From Folder and From Messase clau

c) Which are the nzew messages from john smith'?

SELECT m
FROM FOLDER fin NEW
FROM MESSAGE m in fmsgs_in WITH m.from HAS 'john smith'

In this example. using the From Folder clause, the user restricts the query to consider szdus* -]
the folder NEW (class NEW has a single instance). In the From Message clause, the user sel

LS

P

only messages belonging to NEW system folder, using the operaiion msgs_in available for folder
objects. He/she then further selects those messages where John Smith is the sender. This example
shows how to retrieve messages qualified by their classification relationship with folders. ‘m
result of this query could be as well folders, or message/folder attributes.

WHERE clause (A t

d) Where is the message that I received from John in which he was talking about the price of the

pical example of archivers ...

Example 4 : Using

system? I remember that I moved it to a folder with the same name of the message subject. but I

can not remember which one ...

SELECT m

FROM FOLDER f in MAN

FROM MESSAGE m in f.msgs_in WITH m.content HAS ('sys*' and '$*') and m.from HAS 'john'
WHERE m.subject = f.name

This example 1llustrates how helpful a retrieval language for email systems can be for archivers.
Note that the Where clause is used to compare folder and message attributes and that this
comparison is made considering only those messages that are related to the retrieved folders (this
condition 1s assured by the use of fimsgs_in in the From Message clause).

Example 5§ : Naming Queries and Incremental Query Definition

e) Which messages received from ‘John Smith’ have not been answered yet?

J_TOREPLY := SELECT m
FROM FOLDER f in ANSWERED
FROM MESSAGE m in MSG WITH m.from HAS 'John Smith'
WHERE m f.msgs_in

This query selects all existing messages from 'John Smith' that are not related to folder
ANSWERED. Notice that messages and folders are selected independently one of another. They
are related here through the Where clause. The example also shows how to name a query, such that
it can be used later on other queries.

1039

f) Which important messages, received from 'John Smith', have not been answered yet?

SELECT m

FROM FOLDER f in FLD WITH f.name = 'important’
FROM MESSAGE m inJ_TOREPLY

WHERE m f.msgs_in

Notice that the same query could have been formulated by the intersection between the named
query j_toreply and a query selecting all messages associated to the folder named important.

Example 6 : Retrieving Information about messagses and folders

g) Which are the names of the folders containing more than 50 messages, with at least one message

received today?

SELECT f.name
FROM FOLDER f in FLD WITH f. count_msg > 50
FROM MESSAGE m in f.msgs_in WITH m.date = troday

h)When 'John Smith' sent important or urgent messages to me, and which were their subject?

SELECT TUPLE (fname, m.date, m.subject)
FROM FOLDER f in FLD WITH fname = 'Important' or f.name = ‘urgent’
FROM MESSAGE m in fmsgs_in WITH m.from HAS 'John Smith'

Notice that the TUPLE constructor is used when more than one attribute compose the result of a
query. It is important to highlight that all previous examples could have been defined to return
messages, folders or their attributes.

The intent of the above examples is to illustrate the flexibility and expressiveness of the
proposed query language, which associates:
* characteristics of database query languages (e.g. selection and projection over attributes, set
operators, limited forms of join);
¢ characteristics of full text search systems, allowing searches using prefix, synonyms and
occurrence frequency;

* operators to deal with multivalued complex objects (e.g. €, ¢, C, D, msgs_in, etc.)

5. Classification Mechanism

The goal of the classification mechanism is to enable the easy and flexible organization of
messages into folders, based on the concept of virtual folder, described in Section 3.2. The logical
association of messages to folders presents a number of advantages, among them a) the possibility
of relating a same message to various folders, without message duplication; and b) it frees users
from the burden of locating appropriate folders prior to the search and retrieval of messages with
desired properties. This is a constraint presented by systems in which folders are both the
conceptual and the physical storing unit of messages, as discussed in Section 2.1.

The use of automatic folders presents additional advantages, in particular the maintenance
of the consistency between a folder's classification criterion and the messages related to it. Indeed,
messages are dynamically associated to an automatic folder only when the user wishes to
manipulate the folder's content, triggering thus the execution of a query that retrieves the set of
messages meeting the folder's criterion at that particular time. Another major advantage of
automatic folders is that messages can be restructured into another classification structure simply by
1040

modifying the query expressions that define automatic folders. The approach is thus more powerful
than rules for automatic processing with regard to classification. w! consistency 1s not
automatically maintained, and restructuring is not supported (cf. Section 2

The use of manual folders provides users with the same
classification offered by regular folders systems, but with the additional 1
the iogmal association between message sand folders. Using manual folders, user n gr
messages by any subjective criteria, and they can explicitly associate/dissociate messages to/fr
manual folders.

Operations defined for class F LD, inherited by FLD subcla
(create), update (e.g. rename) and delete (e.g. remove, remove&a: sca
folders. In the case of system folders, the triggering of these operath is e
system. FLD subclasses add behavior specific to each type of folder. In the re
section. we further discuss and illustrate the behavior defined for manual and autor

5.1. Classification with Manual Folders

Most operations available for manual folders are inherited from th
behavior specific to manual folder objects is defined by the operaﬁmm
added to MAN_FLD interface (Figure 1), since the operations allowing m {
associated_to / dissociated_from folders have its applicability restricied to the classific
manual folders. This decision was taken in order to guarantee the consisiency of at
with regard the classification criteria defined for them. However, this does not rep
burden. given that users can define automatic folders based on the combination of «;mn fol fi
either manual, automatic or system, as it will be discussed in Section 5.2. Figure 4 illustrates
use of operations defined for MAN_FLD, to create, rename, classify a message and remov
folder.

=

my_folder := MAN_FLD.create('important’)
my_folder.rename('this_week_important')
my_folder.classify(this_message)
my_folder.remove

Figure 4 - Manual Classification

It is important to highlight that a conceptual difference is assumed between dissociating a
message from a folder (operation unclassify, defined for MAN_FLD), and msa’aldmg a Mess
(operation discard, defined for MSG). In the first case, the message is dissociated from the ma
folder to which the operation is being applied, whereas in the second case, the message
destroyed by the system.

Likewise, folder removal (operation remove) does not imply the deletion of the associated
messages. When the operation remove is applied to a manual folder, the mes 53 g 1ated
from the folder, and the folder is then removed. The operation remove &discard, on "'16 other hand,
implies as well the deletion of all associated messages.

\5;)
U\Z?
&1
<D
o
& B
(€]
[¥5)
&
Q
0
=
D
[0

5.2. Classification with Automatic Folders

The creation of automatic folders is illustrated in Figure 5. It can be noticed that a query
expression has to be supplied as argument, together with the folder name. In the example, an
automatic folder named 'VLDB' was created, which gathers all messages where the word VLDB or

its defined synonyms appear in the subject or contents part. 1041

Users can define automatic folders based on the combination of other folders, either
manual, automatic or system. For example, in Figure 5 another automatic folder named ‘imporiant’
is defined as the union of all messages in the manual folder 'this_week_important’ (containing
messages selected by the user as important, as illustrated in Figure 4), and those contained in the
automatic folder named 'VLDB'.

Of particular interest is the operation set expression, defined for AUT_FLD. When
reorganizing their classification structures, users can simply change the query expression
associated to automatic folders to have them associated with a whole new set of messages, instead
of the laborious and error-prone task of manually moving messages from the old to the new
classification structure. For example, suppose that after meeting the deadline for submitting a paper
to the Conference VLDB, the user changes his/her priorities to the activities of his/her research
project involving the implementation of a query optimizer. The folder important’ can be completely
restructured simply by updating the related query expression, as shown in Figure 5.

vidb_fld := AUT_FLD.create('"VLDB', selectm
from m in MSG
with m.subject has '"VLDB'
or m.content has 'VLDB")

imp_f{ld := AUT_FLD.create(important’, select m
from f in FLD with f.name = 'VLDB'
or f.name = 'this_week_important’
from m in f.msg_in)

imp_{ld.set_expression(select m
from f in FLD with f.name = 'optimizer’
from m in f. msg_in)

Figure 5 - Automatic Classification

The operations remove and remove&discard applied to automatic folders have the same
consequences as for manual folders. In the first case, it destroys the folder without any impact on
the messages that meet the specified folder criteria. In the later, the query is executed, and all
retrieved messages are discarded, after folder deletion.

6. Implementation
6.1. Query Processing

The main purpose of the proposed retrieval mechanism is to provide the easy and fast
access 1o all information related to messages (i.e. message contents and header fields), and
messages classification structure. To attain a reasonable performance, full text indexing/retrieval
techniques [BAES2b] were chosen to implement it. Full text information indexing/retrieval systems
are more flexible, powerful and avoid the complicated and expensive process of semantic indexing
[BAESZ]. When using full text indexing, all text information is referenced by an index that
provides easy and fast access when it has to be retrieved later. The adopted library of full text
indexing/retrieval used [BAE92b] has primitives for incremental full text indexing, and one text
retrieval primitive that allows prefixed match using synonyms, and which also returns text
occurrence frequency.

To establish the correspondence between the queries defined using the proposed language
and the text retrieval primitive available in the library, a set of intermediate retrieval functions was
1042

T PP 1
retriey wpﬂﬁ“’iuﬂv\/“ o ovla > 1e1y.
features provided by the language wm_h the one pr
set of calls of the text retrieval primitive.
To guarantee the expressiveness of the]anguag thi
based on the Complex Values Algebra (ALG) described in
objects represent complex values. The set of defined retri
implement the complete set of algebra operators. Instead, it was

sign
mapping possibilities for query processing, as discussed in Sevuo 6.1.2.

6.1.1 Retrieval Functions

The retrieval functions, described below, were designed based on the possible
of query clauses, as discussed in Section 4.1 (Figure 3). Each retrieval function is i te
using calls to the text retrieval primitive of the adopted full text mdexmg/retﬁ@ val library. Tt
also retrieval functions performing union, difference and intersection between any comp s,
not discussed here.

e SELECT_FLD (fidlist_in, fld_cond): fldlist_out
Select all folders (fldlist_out) from a list of folders (fldlist_in) that satisfy the condition fld_cond
e SELECT_MSG (msglist_in, msg_cond): msglist_out

Select all messages (msglist_out) from a list of messages (msglist_in) that satisfy the condition msg_

e MSG_IN (fidlist_in): F-Msglist_out

Return a flat structure (F-Msglist_out) in the form of pairs of messages with their corres E
folders specified in fldlist_in. This function corresponds to the application of the un f
CV to folders, with regard to their associated messages. This function is used when foiozr\ must be "ric ed
based on characteristics of messages to which they are related (or vice-versa), such as in the queries of examples
3 and 4.

e FLD_MSG (F-Msglist_in, comp_cond): F-Msglist_out
Select all associations between folders and messages (F-Msglist_out) from a list of such associations (F-
Msglist_in) that satisfy the condition comp_cond, which compares message and/or folder aitributes.

e MSGxFLD (msglist_in, fldlist_in, comp_cond): M-fldlist

Join messages in msglist_in with folders in fldlist_in considering the join condition specified in comp_cond,
generating M-fldlist. This function is used to compare message and folders attribuies, when no association
between folders and messages was previously specified, such as in query f of example 5.

e GET_INFO (List, result_spc): Result_out

Return message, folder, or message/folder atiribute(s) (Result_out) from the previous results in List, according
to the specifications in result_spc. This function implements projection operations.

[uS]
o
o
o

6.1.2 Mapping Query Expressions

The mapping of a query expression into a set of intermediate functions 1s based on the
parameters specified in each query clause. The query processing starts by th exec azi on of the
FROM FOLDER and FROM MESSAGE clauses, followed by WHERE clause. It then ends by the
execution of SELECT clause. Figure 6 sketches all the possibilities for the n rlap‘ ing pr wegsg which
are detailed below. 1043

Select

FROM FROM
FOLDER MESSAGE
FROM

MESSAGE
Select FLD Select _ MSG MSG IN
— — IN+
Fldlist ;list E FLD MSG

L]

VS GxFLD FLD_MSG

2
B -~
Geiﬂnfa Get | Info
E Result E | Result | E Result I 5 Result | E Result ﬂ

e ELE

Get _{Info

(A) (B)
Figure 6 - Mapping Possibilities of Query Clauses into Retrieval Functions

The mapping of the From Folder clause, if defined in the query expression, is directly made

using the SELECT_FLD retrieval function applied either to the extension of class FLD (or one of
its subclasses) or to a given folder list (in the case of a narhed query), resulting in a folder list to be
used later as argument, in other retrieval functions.

If the From Message clause is specified in the query expression, there are two mapping

possibilities:

®

me

From Message clause does not use f.msgs_in operation (Figure 6.(A)): the resulting message
list 1s obtained by applying the retrieval function SELECT_MSG either to the extension of class
MSG, or to a given message list (in the case of a named query). The resulting message list is
used later as argument, in other retrieval functions.

From Message clause uses f.msgs_in operation (Figure 6.(B)): the resulting message list will
be obtained by using MSG_IN (to retrieve all messages associated to the folders specified in
the From Folder clause) and FLD_MSG retrieval functions (to restrict the messages to those
meeting the condition stated in the WITH subclause, if it is specified). The result of this
function is a F-Msglist that will be used later as argument in other retrieval functions.

When the Where clause is specified in the query, the next mapping step is the processing of

ssage and folder atiributes comparison it defines. The same possibilities described above for the

From Message clause exist for processing the Where clause:

®

In the first case (Figure 6.(A)), the Where clause processing is performed by MSGxFLD
function using as parameter the previous results obtained during From Folder and From
Message clauses processing. Indeed, since no relationship was established between folders and
messages retrieved by the From Folder and From Message clauses, respectively, they must be
joined based on conditions specified in the Where clause.

1044

e In the second case (Figure 6.(b)), the Where clause processing is by FLD_MSG function,
using as parameter the previous results obtained from the processing of From Message clause
processing.

Finally, the resulting structures are used as GET_INFO parameters to project the final

results. Figure 7 presents the queries of examples 4 and 5 (query €) mapped into the corresponding
retrieval functions.

Query Mapping

SELECT m SELECT_FLD (MAN_FLD, *”): folderlist1

FROM FOLDER fin MAN_FLD MSG_IN (folderlistl):f_msglist2

FROM MESSAGE m in f.msgs_in FLD_MSG (f_msglist2,”m.content HAS ‘sys*’ and ‘$*'7): {_msglist3
WITH m.content HAS ‘sys*’ and ‘$*’ | FLD_MSG (f_msglist3,”m.subject=f.name”): f msglisi4

WHERE m.subject = f.name GET _INFO (f msglist4, m): msglist5

SELECT m SELECT_FLD (ANSWERED, **):fldlist1

FROM FOLDER fin ANSWERED SELECT MSG (MSG, “m.from HAS John”):msglist2

FROM MESSAGE m in MSG MSGxFLD (fldlistl, msglist2, “m f.msgs_in):m_fldlist3

WITH m.from HAS ‘John’ GET_INFO (m_fldlist3, m): msglist4
WHERE m f.msgs_in

Figure 7 - Mapping Examples
6.2. Prototype

Figure 8 presents an overview of the prototype currently under implementation. The
prototype is being implemented in C++ language., and a full text indexing/retrieval library
[BAE92b] is used to guarantee a reasonable performance. At the present stage of the
implementation, only standard Internet messages (RFC 822) and UNIX operating system have
been considered. The architecture is divided into 4 main subsystems, namely srorage, indexing,
retrieval, and interfacing, described below.

a) Storage Subsystem : Message contents, Message headers and folder description are stored as
files maintained in distinct directories. This choice aims at facilitating the indexing process. The
Storage Subsystem is also responsible for maintaining all corresponding indexing structures used.

b) Indexing Subsystem : there are four indexes used to fully index message contents (index msg),
message header (header), folder descriptor (fld), and message-folder association (fld-msg).
These indexes allow the retrieval of messages, folders and information about them in a completely
independent way.

¢) Retrieval Subsystem : This subsystem is responsible for translating every query in terms of the
text retrieval primitive, using the two step mapping described in Section 6.1. The full text retrieval
primitive makes extensive use of the above defined indexes to efficiently access all data.

d) Interfacing Subsystem : This subsystem has the goal of integrating mail system operations (e.g.
send, receive, reply) with the proposed mechanisms. Any email system that provides functions o
extract mails to single files can be used in association with the proposed mechanisms. The
interfacing subsystem takes the files containing the incoming or outgoing messages, and process
them to extract header and content information, so as to prepare all required data to the indexing

1045

subsystem. Messages are fully indexed when they arrive, using incremental indexing (indexes
msg and header). Indexes are also updated when folders are created, renamed or destroyed
(index fId), when messages are classified/unclassified in/from manual folders (index fld-msg), or
when messages are discarded (indexes msg and eventually fld-msg).

Email System

v ¢

[Interfacing Subsystem

" Indexing }——s—{ Retrieval

| Subsystem <——— Subsystem v

(torage Subsystm J

i1

Figure 8 - Prototype Architecture

Index

» header

7. Conclusions

In this work, we have presented classification and retrieval mechanisms intended to aid in
the management of large volumes of semi-structured electronic messages. These mechanisms are
particularly targeted to fulfill the needs of archivers email management strategy, typical of people
who uses electronic mail as an up-to-date and essential source of information in their everyday
activity. Though we have considered in this proposal the use of semi-structured messages, seeking
for a wider applicability of these mechanisms, they can be easily integrated in environments
considering structured messages, in a complementary way. In the same way, these facilities are
also complementary to filtering and automatic processing in the solution to information overload.

The retrieval mechanism, in the form of a query language, puts forward the foundations
enabling mail systems to be treated as real information systems, where information can be easily be
located and retrieved. To the authors' knowledge, no existing electronic mail tool explicitly offers
this latter facility.

Using the proposed classification mechanism, users can classify messages using manual or
automatic folders. Manual folders present the following advantages compared to regular folders : a)
the possibility of relating a same message to various folders, without message duplication; and b) it
frees users from the burden of locating appropriate folders prior to the search and retrieval of
messages with desired properties. The use of automatic folders presents as additional advantages:
a) the maintenance of the consistency between a folder's classification criterion and the messages
related to it, and b) flexible reclassification simply by modifying the query expressions that define
automatic folders. With regard to classification, automatic folders are thus more powerful than
rules in avtomatic processing, since in the later consistency is not automatically maintained, and
restructuring is not supported.

A prototype is currently under development, and it is based on full text indexing/retrieval
technigues, in order to enable the location of unstructured text (in particular, located in the contents

1046

part of messages) with acceptable performance. A two-step mapping process to transform a query
in terms of text retrieval functions was proposed, based on the use of intermediate retrieval
functions. This mapping integrates the query features provided by the language and the text
retrieval primitive provided by the adopted library, associating a semantics to a set of calls of the
text retrieval primitive. The intermediate retrieval functions were based on an algebra for complex
values (ALG®Y). They were adapted for handling two specific complex types (i.e. messages and
folders), so as to cover the required mapping possibilities for query processing. In terms of
expressiveness, the functions enable projection, selection, limited forms of joins, set operators
(union, minus, intersect), and a specific unnest operator. The current state of the prototype does
not allow a sound performance evaluation, but preliminary tests suggests a reasonable level of
performance.

Future research topics include, among others, the definition of a visual language for query
definition by non-expert users, as well as for the visualization of the results of a query; the
extension of text retrieval facilities (e.g. positional text search); an empirical evaluation of the query
language, in terms of performance and facilities required; extension of the proposed mechanisms to
allow folder/message automatic processing; application of the mechanisms to other environments,
such as news reader, on-line document bases, etc.; and structured messages support.

References

[ABIS5] ABITEBOUL,S. ;HULL,R.; VIANU, V. Foundations of Databases .Addison-Wesley
Publishing Company, Chap. 10, 1995.

[ATK89] ATKINSON, M.; BANCILHON, F.; DE-VITT, D.; DIETTRICH, K.; MAEIR, D;
ZDONIK, S. The object-oriented Database Manifesto. In: International Conference on
Deductive and Object-oriented Database, Kyoto, 1989. Proceedings.

[BAE92b] BAEZA-YATES, R; GONNET, G.H. A New Approach to Text Searching. In:
Communications of the ACM, Vol. 35(10):74-82, Oct. 1992.

[BAE92] BAEZA-YATES. Text Retrieval: Theory and Practice. Information Processing 92,
Volume I, Elsevier Science Publishers B.V. (North-Holland), 1992.

[BAE93] BAECKER, R. M. Groupware and Computer-Supported Cooperative Work assisting
human-human collaboration. Baecker, NY, 1993,

[BAN89] BANCILHON, Francois, et al. A Query Language for de O2 Object-Oriented Database
System. Technical Report no. 2 Altair. 1989.

[BAR93] BARBOSA, E.; ZIVIANI. From Partial to Full Inverted Lists for Text Searching.
Technical Report, Universidade Federal de Minas Gerais, Br, 1993.

[BEC96] BECKER, K.; FERREIRA, S. Virtual Folders: Database Support for Electronic
Message Classification. In: International Symposium on Cooperative Database
Systems for Advanced Applications, Heian Shrine, Kyoto, Dec. 1996. pp. 239-2346.

[BER%4] BERG, S. Procmail - autonomous mail processor. WTH- Aachen, Germany.
ftp://informatik.rwth-aachen.de/pub/packages/procmail.

[BORS91] BORENSTEIN, N.; THYBER, C.A. Power, ease of use and cooperative work in a
practical multimedia message system. In: International Journal of Man-Machine
Studies, 34(2):229-259, Feb. 1991.

[DAT86] DATE, C.J. An Introduction to Data Base Systems. Addison-Wesley Publishing
Company Inc. USA, 4th. Ed., 1986.

[DEUS1] DEUX,O et al. The O2 System. In: Communications of the ACM, 34(10):34-48, Oct.
1991.

[EGL93] EGLOWSTEIN, H.; SMITH, B. Mixed Messaging . In: BYTE, March 1993, pp.
136-154.

[FER97] FERREIRA, S. Mechanisms for Information Classification and Retrieval in Electronic
Mail. Ms.C. Dissertation. Porto Alegre, PUCRS, March 1997.(in Portuguese)

[FER97b] FERREIRA, S. A Query Language for Retrieving Information in Electronic Mail
Environments. Accepted for publication in the XII Brazilian Symposium on Database
Systems (SBBD97), Fortaleza, Oct. 1997. 1047

[GOL92]

[HAM90]

[HIL85]

[KOS91]
[KOS92]

[LAIBE]

[LAQ92]
[MACS8]
MAE9%4]
[MALS7]
[MALZ9]

[NIC92]

[PAL95]

[POL8S]
[REI93]

[ROB91]
[TAY92]
[TER92]

[WYL92]

1048

GOLDBERG, Y; SAFRAN, M, SILVERMAN, W,-SHAPIRO, E. Active Mail: A
framework for Integrated Groupware Applications. In: Growpware'92 by D.
Colleman, Morgan Kaufmann Publishers, 1992, pp. 222-224.

HAMMAINEN, H.; ALASUVANTO, J.; MANTYLA R. Experiences on Semi-
Autonomous User Agents. In: Decentralized A. I.. Amsterdam, Elsevier Science
Publishers B. V., 1990. pp. 235-249.

HILTZ, S.R.; TUROFF, M. Structuring Computer-mediated Communication Systems
to avoid Information Overload. CACM, 28(7):680-689, July 1985.

KHOSHAFIAN, S. at al. Intelligent Offices. New York, NY, J.Wiley, 1991.
KHOSHAFIAN, S. Intelligent Databases. New York, NY, J.Wiley, 1992. pp. 293-
346.

LAIL K.; MALONE, T.; YU, K. Object Lens: A "spreadsheet" for Cooperative Work.
In: Readings in groupware and CSCW - Assisting Human-Human Collaboration., pp.
474-484.,

LAQUEY, T. at al. The Whole Internet User's Guide & Catalog. Addison-Wesley
Publishing Company Inc., 2Ed., 1992.

MACKAY, W. Diversity in the Use of Electronic Mail: A preliminary Inquiry. In:
ACM Transactions on Office Information Systems, 6(4):380-397, Oct. 1988.

MAES, P. Agents that Reduce Work and Information Overload. In: Communications
of the ACM, 37(7), July 1994.

MALONE, T. et al. Intelligent Information-Sharing Systems. In: Communications of
the ACM, 30(5):390-402, May 1987.

MALONE, T.; et al. The Information Lens: An Intelligent System for Information
Sharing and Coordination. In: Technological Support for Work Group Collaboration,
pp. 65-88, by M.H.Olson, 1989, Hillsdale, NJ:Lawrence Erlbaum.

NICHOLS, D.; GOLDBERG, D.; OKI, B.M.; TERRY, D. Using Collaborative
Filtering to Weave an Information Tapestry. In: Communications of the ACM, Vol.35,
No.12, December 1992, pp.61-70.

PALME, J.; KARLGREN, J. ;PARGMAN, D. Issues when designing filters in
messaging systems. Report, Department for Computer and Systems Sciences,
Stockholm University and Kungliga Tekniska Hogskolan, Sweden -
http://www.dsv.su.se

POLLOCK, S. A Rule-Based Message Filtering System. In: Conference on
Organizational Computing Systems. ACM Press, New York, pp. 21-30.
REINHARDT, A. Smarter E-mail is Coming. In: BYTE, March 1993, pp. 90-108.
ROBINSON, M. Through a Lens Smartly. In: BYTE , May 1991. pp. 177-187.
TAYLOR, Dave; WEINSTEIN, Syd. The Elm Filter System Guide.gopher.emr.ca as
/public/doc/elm-docs/filter-elm.

TERRY, Douglas. Avoiding an Information Tapestry. In: Communications of the
ACM, 35(12):61-70, Dec. 1992.

WYLE, M.F. A rule-based Electronic Mail Filter . Report, Institute of Technology,
Zurich, Switzerland. Gopher at rohan.sdsu.edu Science Publishers B. V., 1990. pp.
235-249

