
automatic
nuúntenance of consistency betvveen the
The paper discusses illustrates the use of

discusses

Key~ Words: query language, full text indexing and
muil

L Introduction

object-oriented

Electronic mail (email) become an essential form of comrnunication.
fcatures is the facility and rapidity with which information can reach a

cost, compared to other forms of
The growing síze of messaging
distribution lists or

from user to user, two
are users interested

and save time. Prioritizers deal with the problem of infonnation

e!ectrm!.lc

their mailbox, the number of folders and the number of the subscription lists. This kind of user
tends to use message filtering and automatic processing facilities [TA Y92, POL88, BER94] to
reduce the amount of effort and time spent in the management of his/her mailbox. Archivers, on the
other hand, use email as an information source, and are willing to spend extra time to avoid the
possibility of missing something important. They resist to inhibit the flow of incoming messages
by filtering, dueto the risk of loosing infmmation potentially useful. Moreover, they tend to save
most received messages with the assumption that they may be useful (sorne day), have a large
number of folders, and consequently have difficulty find filed messages. The archivers email
handling strategy suggests that email is much more than an efficient communication technology: it
is a rich so urce of quality and up-to-date infomwtion (MAC88, P AL951. In both cases. the large
amount of mails make it difficult to identify those that are important, to classify them according to
appropriate criteria, and to discard useless messages [BAE93].

In this paper, we discuss the striking features of the mechanisms proposed in [BEC96,
FER97, FER97b] to aid in the classification and retrieval of large volumes of electronic messages,
considering mainly the needs of the archivers mail message handling strategy. The classification
mechanism [BEC96] is based on the concept of virtual folder, which allows messages to be
logically related to one or more folders, without requiring message duplication. The retrieval
mechanism was designed as a specific-purpose retrieval language [FER97b] that enables users to
locate and retrieve messages, information about messages andlor the classification structures. The
language makes use of text information indexing and retrieval techniques in order to efficiently t:reat
semi-structured messages, i.e. messages divided into a header, describing the sender, receiver(s),
subject, etc., and the content of the message, written in natural language. U sing this retrieval
language, users can define Automatic Folders, a particular type of virtual folder, very similar to the
concept of view in database systems [DAT86], in which a folder is specified by a query that
retlieves a set of messages that meet a given cliterion. These mechanisms are complementary to the
functions present in mail systems (e.g. send, forward, receive, etc.), and mail tools (e.g. edil,
print, etc.).

Among the benefits provided by the proposed mechanisms, two of them are of special
relevance. First, automatic folders help on automatic classification and reorganization of messages,
taking in charge the systematic maintenance of the consistency between a folder's intent and the set
of messages the folder represents. Second, the retrieval language puts forward the foundations
enabling mail systems to be treated as real infmmation systems, where information can be easily be
located and retrieved. In contrast to existing mail systems, either commercial fLAQ92] or
expelimental [BOR 91, NIC92, GOL92, MAL87, MAL89, LAI88, POL88, MAE94, EGL93,
BER94, TAY92, POL88, WYL92], the retrieval facilities are not limited to the location and
retlieval of messages, but enables to easily retrieve information about messages and/or
classification structures.

The rest of the paper is organized as follows. In Section 2, current approached for dealing
with the problem of information overload in electronic mail environments are discussed. The
proposal is presented in Section 3, which desclibes the underlying philosophy, the related
concepts, and the representation of these concepts using and object-oriented model. Section 5
desclibes the language designed to retrieve information in email systems, exemplifying its use.
Section 6 presents the classlfication mechanism based on the concept of virtual folder. Section 6
discusses implementation aspects, and conclusions are drawn in Section 7, where future work
perspectives are also presented.

1030

not to

all emails contained in one or more folders, or even the contents
can be a if user cannot

to inspect.
l03í

2.2. Filtering and Automatic processing

Message filtering is characterized by the selection of a set of messages that meet sorne
criterion [MAL87]. Filters are established in tenns of information contained in messages, either in
the header (e.g. to:, from:, etc.) or contents parts. The use of filters aims at reducing the user effm1
in the identification of messages for later processing (e.g. classification, deletion, etc.) [PAL95].
Filtering can be triggered automatically for incoming messages.

In mostmail tools [ROB91, BOR91, LAI88, POL88, MAL89, GOL92, WYL92, TAY92,
TER92, BER94, MAL87], automatic processing is implemented using rules, A rule is composed
of a selection part, which describes a filter, and an action part, which defines a set of procedures to
be applied to the set of filtered messages. Rules are triggered by system events, such as incorning
mail, enabling the automatic processing of messages (e.g. automatic deletion or classification).
Different proposals ofrule based systems can be found in the literature [BOR91, NIC92, GOL92,
MAL87, MAL89, LAI88, POL88, MAE94]. Tools such as ISCREEN [POL88], Tapestry
[NIC92] and Procmail [BER94], ELM [TAY92], Mail Filter [WIL92], are based on serni
structured messages, whereas others use the concept of structured messages, discus,sed in Section
2.3.

The facilities for defining fllters are normally the same message location functions available
in mail tools. An alternative approach for filtering semi-structured messages can be found in
T APESTR Y [TER92], which is based on a query language named TQL. The idea in T APESTR Y
is to reduce informatíon overload by having a central repository of messages. Individual users can
then define TQL filters to search for interesting messages in the repository, and bring them to
hislher own mailbox. An example of TQL query is m.sender='john' and m.words = {'SBBD '],
which filters all messages corning fromjohn and which have the word "SBBD" in its contents. It is
not repmted in [GOL92] the use of TQL for searching messages in the user own mailbox.

The use of rules for message classification makes explicit the criteria to classify messages,
aiding in the identification of messages and minimizing sorne of the problems mentioned in Section
2.1. However, it does not solve the problem of maintaining the consistency between the folder
intended classification criterion and the messages it contains, since messages can be assigned to
folders by other procedures (e.g. manually, or by other conflicting rules). It also does not address
the problem of{ \e m ínconsistencies due to the action of time}, nor help much in the reorganization
of folder contents and classification structures, given that often filtering can only be applied to
incoming mail.

Filters defined Over the contents pmt of semi-structured messages have their expression
power lirnited by the facilities available for dealing with text. Since the semantics of message
contents, written in natural language, can not be easily identified [MAL89, HAM90], the
construction of precise and useful filters can be a complex, if not impossible task. Existing filtering
software such as [WYL92, TAY92, BER94] are not easy to setup and require the user to prepare
special control files in a language that cannot be easily understood by non-computer specialists
[PAL95]. The poor expressiveness of filters or the complexity of their definition can result in a
selection of messages that is either incomplete or imprecise, which in the context of automatic
processing can lead to undesired effects, such as deleting important messages or classifying a
message in an unexpected way. Such kind of side-effect can be disastrous, specially consideling
the archivers profile.

Therefore, filtering and automatic processing can be ínvaluable for managing large volumes
of messages, but they do not constitute a complete and fully reliable solution for identifying and
classifying electronic messages, in particular considering the archivers profile.

1032

is limite:d.

3. Proposai

to treat electronic as an
language: e:nabling the location and retrieval of
messages. It offers facilities to locate information independcntly
through definition ad hoc que1ies to locate and

classification structure, Of any vUU.HHHUH

it and retrieve messagcs, also infonnation m
messages and/or its classification structures.

The concept of virtual folder and modeling using an object-miented modeL wh]ch
undcrlie retrieval classification mechanisrns, are discussed in

is then presented Section 4, whereas the 'YÁVCC'0,,H~~~

object of 5.

the user;

or

type tuple (Msg_ict: string,

From: Address,

To: set (Address),

Ce: set (Address),

Date: Date,

Subject: string,

Size: Integer,

Con ten t: T ext)

rnethod creale,

discard,

reccivc,

seml,

with extension

Class FLD

type tuple (Name: string,

Creation: Date,

Author: string,

.. ,)

method msgs_in: set(MSG),

count_rnsg intcger,

rename,

e reate,

remove,

remove&discard,

...)

with extension

Class MAN_FLD inheril FLD

enct

type tuple (msgs set(MSG l 1

rnethoct classify (msgs: sel (MSG)),

unclassify

with extension

set(MSGii,

Class AUT _FLD inherit FLD

en el

type tuple (expression: Queryl

method set_expression (exp: Query l

wíth cxtcnsion

rnethucl bocly msgs in: set (MSCi) in class MA~i 1-LI!

1 return self.msgs}

methoct bocly msgs_in: set (MSG) in class l•d:T Tl~L>

1 return self.expression.eY.eculc}

rnethod body set_expression (exp: Qucty!

{ selfexpression = exp;}

Figure 1 - Data

Class MAI'\f_FLD

Class FLD
(Virtual Folders)

Class AUT_FLD

language is in Figure 3. In
are language. The reader can refer to [FER97] for o
this language. as well as complete syntax. Dueto space limitations, we
features this language using exarnples, after a brief description
language is composed four main clauses. as follows:

lsingle_Query ::= SELECT <result>
~=-~'~ ~-.,-~~- ..,~,-~1

FROM FOLDER f IN <flds> [WITH <fld_cond>J
[FROM MESSAGE m I <msgs> [\'VITH <rnsg_cond> i
[WHERE <comp_cond> J]
1

SELECT <result>
FROM MESSAGE m IN <msgs> [WITH <msg_cond>]

<result> .. - <folderlist> 1 <msglist> 1 <msg_att> 1 <fld_att> 1
TUPLE((msg_att 1 fld_att)+)

<folderlist> .. - (fld)+ /* where fld is an instance of FLD*/

<msglist> .. - (msg)+ /* where msg is an instance of MSG */

<flds> FLD 1 MAN_FLD 1 AUT_FLD 1
NEW 1 OLD 1 ANSWERED 1 P.EPLY 1 <named-folder-query>

<msgs> ··- 1\/ISG 1 f.msgs_in 1 <named-message-query>

Figure 3- Simplified Query Language Syntax

0 Select clause: specifies whether the result of a query is a set of messages (msglist).
folders (folderlist), or one or more message and/or folder attribute (msg_art
jld_att). msglist andfolderlist are, respectively, a set of message/folder object
(intemal surrogates).

?b From Folder clause: allows users to specify which folders will considered during query
processing (jlds). The default is the set of all existing folders (i.e. instances of
Restrictions can be made through thc specification of a F LD subclass, or using folder
selected by a previous query (named-folder-query). Optionally, additional restrictíons can
applied to the resulting folder subset by the specification of conditions on folder
CWITH subclause), using relational, logical and text retrieval operators. The From
clause is not required if the user wants to retrieve messages or infonnation
independently of any folder information.

@ From Message clause: allows users to specify the set of messages that wm considered
during query processing (msgs). The default is the set of all existing messages instances
of class MSG). This set can be delimited in two ways. First, using only the messages

1037

¡

SELECT m
FROlVl MJESSAGE m in MSG WITH m.content HAS 'DB' and m.date > 10/03/97

SELECT f
ItROM FOLDER fin WITH f.exp HAS

SELEC'T
FROI'V! FOLDER fin NE W

111.fron1

d) message

I rernember that I it to a folder

can not remember which one ,.,

SELEC'f m
FROlv1 FOLDER f in MAN
FROM MESSAGE m in f.msgs~in WITH m.content HAS (
WHER.E m.subject = f.name

same name

and and m.from :HAS

Example 5 : Namirng Oue:ries m::~d Incncrnental Que:ry De::finitio:n

messagcs 'John

SELECT m
FROIVI FOLDER f in ANSWERED
!<'ROM MESSAGE m in IviSG WITH m.from HAS 'John Smith'

WHERE m f.msgs~in

query selects all existing
ANSWERED. that messages and folders are selected moleD:cmle
are relatccl herc through the clause. The example shows
it can be used later on other queries.

u

1039

f) Which important messages, recéived from 'John Smith', have not been answered yet?

SELECT m
FROM FOLDER f in FLD WITH f.name = 'important'
FROM MESSAGE m in]_TOREPLY
WHERE m f.msgs_in

Notice that the same query could have been formulated by the intersection between the named
query j_toreply anda query selecting all messages associated to the folder named important.

Example 6 : Retrieving lnformation about messages and folders

g) Which ru:e the names of the folders containing more than 50 messages, with at least one message

received today?

SELECT f.name
FROM FOLDER f in FLD WITH f. count_msg > 50
FROM MESSAGE m in f.msgs_in WITH m.date = today

h)When 'John Smith' sent important or urgent messages to me, and which were their subject?

SELECT TUPLE (f.name, m.date, m.subject)
FROM FOLDER f in FLD WITH f.name = 'important' or f.name = 'urgent'
FROM MESSAGE m in f.msgs_in WITH m.from HAS 'John Smith'

Notice that the TUPLE constructor is used when more than one attribute compose the result of a
query. It is important to highlight that all previous examples could ha ve been defined to retum
messages, folders or their attributes.

The intent of the above examples is to illustrate the flexibility and expressiveness of the
proposed query language, which associates:
• characteristics of database query languages (e.g. selection and projection over atuibutes, set

operators, limited forms of join);
• characteristics of full text search systems, allowing searches using prefix, synonyms and

occurrence frequency;
• operators to deal with multivalued complex objects (e.g. E,~, e,::>, msgs_in, etc.)

5. Classification Mechanism

The goal of the classification mechanism is to enable the easy and flexible organization of
messages into folders, based on the concept of virtual folder, described in Section 3.2. The logical
association of messages to folders presents a number of advantages, among them a) the possibility
of relating a same message to various folders, without message duplication; and b) it frees users
from the burden of locating appropriate folders prior to the search and retrieval of messages with
desired properties. This is a constraint presented by systems in which folders are both the
conceptual and the physical storing unit of messages, as discussed in Section 2.1.

The use of automatic folders presents additional advantages, in pruticular the maintenance
of the consistency between a folder's classification criterion and the messages related to it. Indeed,
messages are dynamically associated to an automatic folder only when the user wishes to
manipulate the folder's content, triggering thus the execution of a query that retrieves the set of
messages meeting the folder's criterion at that particular time. Another major advantage of
automatic folders is that messages can be restructured into another classification structure simply by
1040

fl1

rn
m.

the

their associated messag,cs. This function !S usod
based on characteristics oÍ messages to vvhich ar~ reiated
3 and 4.

Sclect all assocíations between folden; and messages ljst of
which compaxes message and/or foldn altribcllcs

Join messages in the
"~"p."-""""'" M -fldlist. This function is u sed to compare message and

such as in query f of

Select

MSG

Result

(A)

MSG IN+
FLD_MSG

.---i----1

(B)

Figure 6 - Mapping Possibilities of Query Clauses into Retrieval Functions

The mapping of tlÍe From Folder clause, if defined in the query expression, is directly made
using the SELECT_FLD retrieval function applied either to the extension of class FLD (or one of
its subclasses) orto a given folder list (in the case of a named query), resulting in a folder list to be
used later as argument, in other retrieval functions.

If the From Message clause is specified in the query expression, there are two mapping
possibilities:
• From Message clause does not use fmsgs_in operation (Figure 6.(A)): the resulting message

list is obtained by applying the retrieval function SELECT_MSG either to the extension of class
MSG, orto a given message list (in the case of a named query). The resulting message list is
used later as argurnent, in other retrieval functions.

• From Message clause uses fmsgs_in operation (Figure 6.(B)): the resulting message list will
be obtained by using MSG_IN (to retrieve all messages associated to the folders specified in
the From Folder clause) and FLD_MSG retrieval functions (to restrict the messages to those
meeting the condition stated in the WITH subclause, if it is specified). The result of this
function is a F-Msglist that will be used lateras argument in other retrieval functions.

When the Where clause is specified in the query, the next mapping step is the processing of
message and folder attributes comparison it defines. The same possibilities described above for the
From Message clause exist for processing the Where clause:
• In the first case (Figure 6.(A)), the Where clause processing is perfonned by MSGxFLD

function using as parameter the previous results obtained during From Folder and From
Message clauses processing. Indeed, since no relationship was established between folders and
messages retrieved by the From Folder and From Message clauses, respectively, they must be
joined based on conditions specified in the Where clause.

1044

as
4

~--~~-~· -~~-~~-·~~~~·~~~~~~~~-~~~--~~~~~ ··~,

~~~~~-~-~~-~-~-~~--~~:---~~~--~-~-~~~~-~ ~- -~-~~~~-~~=~~~ ... ~J 
SELECT m SELECT _FLD (MAN_FLD, ""): folderlistl 

FRO:M FOLDER fin MAN_F1~D MSG_IN (folderlistl):f_msglist2 

FROM MESSAGE m in f.msgs_ín 1 FLD_MSG (f_msglist2,"m.content HAS 'sys''' ancl 'S*'"): 

WITH m.content HAS 'sys*' and '$*' 1 FLD __ MSG (f_msglist3,"m.subject=f.name"): f_msglis\4 

1-hWHE~-R~E-m~.s~u~bJ~·e~ct~. =-f.~nan~n-e------~~~-G-'E_T __ I_N~F-'0-(f_·-~m-s_gl~is.~t4~'~r~n)~:~rr~ls_g_li-st~5~-~~~-~-~~--. ~-------\ 
1 SELECT m 1 SELECT_F'LD (AI'>TSWERED, ''"):fldlistl 

i FROMFOLDER fin ANSWERED SELECT_MSG (MSG, "m.from HAS John"):msglist2 

FROM lV!ESSAGE m in MSG 

WITH m.from HAS 'John' 

MSGxFLD (fldlistl, msglist2, "m fmsgs_in):m tld!ist3 

GET _INFO (m_fldlist3, m): msglist4 

WHERE m f.msgs_in 

Figure 7- Examples 

6.2. 

Figure 8 presents an overview of the prototype 
is being implemented in C++ language. 

[BAE92b] is used to guarantee a reasonable 
implementation, only standard Intemet messages 
been considered. The architecture is into 4 
retrieval, and 

a) Storage Subsystem : Message 
files maintained in distinct 
Storage Subsystem is also 

below. 

subsystem takes containing the incoming or 
them to extract and content infonnation, so as to 

1045 





[BAE92b] 

[BAE92] 

[FER97] 

[FER97b] 
Alegre, 

Query Language for 
Accepted for publication in 

D97), Fortaleza, 1997. 



235-249 

1048 


